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Abstract

This paper presents results of numerical simulation of the propagation of transverse elastic waves corresponding to the

A0 mode of Lamb waves in a composite plate. The problem is solved by the Spectral Element Method. Spectral plate finite

elements with 36 nodes defined at Gauss–Lobatto–Legendre points are used. As a consequence of the selection of Lagrange

polynomials for element shape functions discrete orthogonality is obtained leading to the diagonal form of the element

mass matrix. This results in a crucial reduction of numerical operations required for the solution of the equation of motion

by time integration. Numerical calculations have been carried out for various orientations and relative volume fractions of

reinforcing fibres within the plate. The paper shows how the velocities of transverse elastic waves in composite materials

depend on the orientation and the relative volume fraction of the reinforcement.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials are ideal for structural applications where high strength-to-weight and stiffness-to-
weight ratios are required. Aircraft and spacecraft are typical weight-sensitive structures in which composite
materials are cost-effective so that their use has substantially increased over past decades. Composite materials
possess unique advantages over their metallic counterparts, but they also present researchers and designers
with complex and challenging problems [1–6].

Damage initiation and growth in structural elements is a very significant problem since in most cases it leads
to catastrophic accidents. In the case of structural elements made out of composite materials, delamination,
fibre breaking, and matrix cracking are especially dangerous failure modes. This is why, in order to improve
the safety and reliability of such structures, periodic inspections are necessary. For this reason a variety of on-
line structural health monitoring (SHM) systems and strategies have been developed and used based on
piezoelectric sensors and elastic wave propagation.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Impact wave signals are generated by piezoelectric actuators and usually these are various modes of Lamb
waves. Next, waves propagate and system response is registered in piezoelectric sensors embedded in a
structure. The signals registered are used as input for further processing with damage detection algorithm. In
practical applications, due to a simpler interpretation of measured responses, signals which correspond to the
fundamental modes of Lamb waves are considered, these being A0 and S0 modes. Furthermore, the A0 mode
excited in composite materials is characterised by a much stronger out-of-plane motion than the S0 mode. This
makes the A0 mode more suitable for measurements in the case of plate-like structures and for that reason the
modelling of the A0 mode in the present analysis seems sufficient and justified.

The main problems in the analysis of high frequency (50–350 kHz) elastic waves propagating at velocities
about 1 km/s in composite elements of structures are related to spatial discretisation. In order to obtain an
accurate solution of the equation of motion and to capture the effect of wave scattering at boundaries and
structural discontinuities a huge number of degrees of freedom (dof) is necessary. Conventional modal
methods, when extended to high frequency regimes, become computationally inefficient since many higher
modes that should participate in motion are misrepresented. For a specific geometry and finite periodic or
semi-infinite boundary conditions many different solution techniques have been proposed and reported so
far—an excellent overview of theses techniques is given in Ref. [7].

Among many methods used for modelling and studying the phenomena of propagation of elastic waves
such numerical methods can be marked as: the finite difference method (FDM) [8], the finite element method
(FEM) [9–14], the boundary element method (BEM) [15,16]. However, they are not only time consuming, but
also require large computational memory in the case of simple two-dimensional (2D) wave propagation
problems. On the other hand, the finite strip element method (FSEM) and semi-numerical method (SNM)
[17–19] require much less memory storage space for necessary data due to a lower level of discretisation and
application of the exact solution in one direction. SNM is very effective for the computation of forced wave
motion in the frequency domain and can be used for much higher frequencies than the methods based on
FEM. As with BEM, FSEM uses Green’s function but in a different manner. On the other hand, variable size
of strip stiffness matrix and modification of spline functions at boundary nodes are inconvenient features of
the method.

A method that incorporates the advantages of FEM (discretisation) and the FDM (time integration
schemes) is the unstructured grid method (UGM) [20,21]. This method is based on the dynamic equilibrium
equations of computational cells formed around auxiliary triangular grids. The solution is obtained by the
alternative calculation of nodal displacements and central point stresses of spatial grids.

A different approach has been proposed in Refs. [22,23]. In the mass-spring-lattice-model (MSLM) inertia
and stiffness properties are calculated using lumped parameters. Recent developments in this area include a
new local interaction simulation approach (LISA) [24–26]. This method does not use a finite difference
equation, but simulates wave propagation heuristically, i.e. directly from physical phenomena and properties.

More recently various spectral methods have been proposed for the analysis of elastic wave propagation in
complex media [27,28]. It should be stressed that, despite the terminology, these methods are completely
different.

The fast Fourier transformation (FFT)-based spectral element method (SEM) proposed by Doyle [27] is
very similar to the technique of the FEM as far as the assembly and the solution of the equation of motion is
concerned. The formulation of this method starts from exact solutions of the governing partial differential
equations in the frequency domain. Excitation signals are transformed into a number of frequency
components using FFT. Next as a part of a big frequency loop the dynamic stiffness matrix is generated,
transformed, and solution is found for each unit impulse at each frequency. This yields directly to frequency
response function (FRF) of an analysed problem. The calculated frequency domain responses are then
transformed back to the time domain using inverse fast Fourier transformation (IFFT). This technique is well
suited to simple 1D problems [29–31], but becomes difficult to use for complex geometries (additional throw-
off elements are demanded). Some difficulties also arise with the periodic nature of FFT when 2D or 3D
problems must be analysed. However, recent work in this area shows the application of the FFT-based SEM
to wave propagation phenomena in anisotropic plates and inhomogeneous layered media [32–34].

The SEM as proposed by Patera in 1984 [28] is much more versatile for the investigation of the propagation
of elastic waves in structures of complex geometries. This method originates from the use of spectral series for
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the solution of partial differential equations [35]. The idea of SEM is very similar to FEM except for
the specific approximation functions it uses. Elemental interpolation nodes are located at points corresponding
to zeros of an appropriate family of orthogonal polynomials (Legendre or Chebyshev). A set of local s
hape functions consisting of Lagrange polynomials, which are spanned on these points, are built and used. As
a consequence of this, as well as the use of the Gauss-Lobatto-Legendre integration rule, a diagonal form of
the mass matrix is obtained. In this way the cost of numerical calculations is much less expensive than in the
case of any classic FE approach. Moreover, the numerical errors decrease faster than any power of 1/p
(so-called ‘spectral convergence’), where p is the order of the applied polynomial [36]. The main fields
of application of SEM nowadays include: fluid dynamics [37], heat transfer [38], acoustics [39], seismology
[40], etc.

However, it appears that the use of SEM for problems of propagation of elastic waves in 2D structural
elements made out of composite materials has not been widely reported in the literature so far. The use of the
SEM for wave propagation in anisotropic crystals only has been considered [41] and the application of the
SEM to wave propagation in anisotropic and inhomogeneous uncracked and cracked beams [42]. The method
presented can be considered as an alternative to the FFT-based SEM. The aim of this paper is to develop a
spectral plate finite element, which next can be successfully used for the analysis of the propagation of
transverse (out-off-plane or flexural) elastic waves in a composite plate. In order to model A0 Lamb mode
accurately the first-order shear deformation theory for plates is applied. Numerical calculations presented in
this work have been carried out for various orientations and relative volume fractions of reinforcing fibres.
The following study of simulated wave propagation in composite plates provides useful information which can
be used in SHM system design.

2. Spectral plate finite element formulation

2.1. Definition of element nodes

Nodes of a spectral plate finite element are defined in the local coordinate system of the element xZ as roots
of the following polynomial expression:

ð1� x2ÞP0N ðxÞ ¼ 0;

ð1� Z2ÞP0N ðZÞ ¼ 0;

(
(1)

where x,ZA[�1,1] and where PN is the Nth order Legendre polynomial. The symbol 0 denotes the first
derivative. In this way the nodes of the element can be specified in the local coordinate system of the element.
In the current formulation the fifth-order Legendre polynomial is chosen, hence 36 nodes can be specified in
Fig. 1. A 36-node spectral finite element in the local coordinate.
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the local coordinate system of the element xZ as (see Fig. 1 for details):
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It can be seen from Fig. 1 that the present definition of the element nodes results in a irregular distribution
of the nodes within the element contrary to the classical FE approach, when the element nodes are uniformly
spaced within elements.
2.2. Element shape functions

A set of shape functions can be built on the specified nodes to approximate the geometry of the element in
the global coordinate system xy and also to approximate the transverse w and the angular a, b, displacements
within the element. The same shape functions are used for both coordinates x and y as well as for all
displacement components.

The Lagrange interpolation function supported on the element nodes can be written as follows:

xðx; ZÞ ¼
P36
k¼1

N�kðx; ZÞxk ¼
P6

m¼1

P6
n¼1

NmðxÞNnðZÞxmn;

yðx; ZÞ ¼
P36
k¼1

N�kðx; ZÞyk ¼
P6

m¼1

P6
n¼1

NmðxÞNnðZÞymn;

8>>>><
>>>>:

(3a)

w̄ðx; ZÞ ¼
P36
k¼1

N�kðx; ZÞw̄k ¼
P6

m¼1

P6
n¼1

NmðxÞNnðZÞw̄mn;

āðx; ZÞ ¼
P36
k¼1

N�kðx; ZÞāk ¼
P6

m¼1

P6
n¼1

NmðxÞNnðZÞāmn;

b̄ðx; ZÞ ¼
P36
k¼1

N�kðx; ZÞb̄k ¼
P6

m¼1

P6
n¼1

NmðxÞNnðZÞbb̄mn;

8>>>>>>>>><
>>>>>>>>>:

(3b)

where Nm(x) and Nn(Z) are 1D shape functions of the element (in the local coordinate system of the element
xZ) while xk and yk, denote the coordinates x and y of the element nodes. Nodal values of the transverse and
angular displacements are denoted as w̄; ā; b̄, respectively. Positive values of the nodal displacements are
shown in Fig. 2.

It should be mentioned here that the approximation shape functions Nm(x) and Nn(Z) are orthogonal in a
discrete sense: Z 1

�1

NmðxÞNnÞdx ¼
X6
k¼1

wkNmðxkÞNnðxkÞ ¼ wmdmn; m; n ¼ 1; . . . ; 6, (4)

where wk is the Gauss–Lobatto weight defined later, dmn is the Kronecker delta. The shape functions for
element nodes (i.e. 1, 11, 22, and 34) are presented in Fig. 3.
Fig. 2. Positive values of nodal degrees of freedom.
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Fig. 3. Selected shape functions for a 36-node spectral plate finite.

y

x

1000

10
00

100 N

500

50
0

B

E

C

D

y’ x’

A

40
0

400

Fig. 4. A composite plate under investigation.
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2.3. Mass and stiffness matrices

Based on Mindlin’s theory for plates the displacement field within the element can be expressed as

uðx; y; zÞ ¼ z āðx; yÞ;

vðx; y; zÞ ¼ �z b̄ðx; yÞ;

wðx; y; zÞ ¼ w̄ðx; yÞ:

8><
>: (5a)

The independent rotations āðx; yÞ and b̄ðx; yÞ and transverse displacement w̄ðx; yÞ are assumed in the
following form (see also Eq. (3b)):

w̄ðx; ZÞ

b̄ðx; ZÞ

āðx; ZÞ

8><
>:

9>=
>; ¼ Nq ¼

X36
k¼1

½N�kðx; ZÞ

w̄k

b̄k

āk

8><
>:

9>=
>;, (5b)
Time [ µs]

Fo
rc

e 
[N

]

0 50 100 150
-100

-50

0

50

100

Frequency [kHz]

A
m

pl
itu

de
 [

N
]

0 25 50
0

1

2

3

4

5
cut-off

a b

Fig. 5. An excitation signal in the form of a force pulse in (a) time, (b) frequency domain.
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where N denotes the shape function matrix and q is the vector of nodal variables. Based on the
given displacement field the strains within the element can be expressed according to a standard FE
formula as

�xxðx; ZÞ

�yyðx; ZÞ

gxyðx; ZÞ

gxzðx; ZÞ

gyzðx; ZÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ Bq ¼

X36
k¼1

½Bkðx; ZÞ�

w̄k

b̄k

āk

8><
>:

9>=
>;, (6)
epoxy-graphite, t=0.24 ms epoxy-glass, t=0.24 ms

θ=90°, vol=25%

θ=60°, vol=25% θ=60°, vol=25%

θ=45°, vol=25% θ=45°, vol=25%

θ=90°, vol=25%

Fig. 7. Front of propagating transverse wave for a single layer.
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where B is the strain–displacement matrix which can be calculated as

½Bkðx; ZÞ� ¼

0 0 qxN�k

0 qyN�k 0

0 �qxN�k qyN�k

qxN�k 0 N�k

qyN�k �N�k 0

2
6666664

3
7777775
;

qxN�k

qyN�k

( )
¼ J�1

qxN�k
qZN�k

( )
(7)

and where the symbol J�1 denotes the inverse of the well-known Jacobian matrix which coefficients can be
easily calculated:

J ¼
qxx qxy

qZx qZy

" #
¼
X36
k¼1

qxN�kxk qxN�kyk

qZN�kxk qZN�kyk

" #
. (8)
epoxy-graphite, t=0.36 ms epoxy-glass, t=0.36 ms

θ=90°, vol=25%

θ=60°, vol=25% θ=60°, vol=25%

θ=45°, vol=25% θ=45°, vol=25%

θ=90°, vol=25%

Fig. 8. Front of propagating transverse wave for a single layer.



ARTICLE IN PRESS
P. Kudela et al. / Journal of Sound and Vibration 302 (2007) 728–745736
The calculation of the characteristic mass M and stiffness K matrices of the spectral plate finite element
follows the standard FE formulae and can be written in the following form:

M ¼ r
Z þ1
�1

Z þ1
�1

NTN det½J�dZdx ¼ r
X6
m¼1

X6
n¼1

wmwn½Nmn�
T½Nmn� det½Jmn�, (9)

K ¼

Z þ1
�1

Z þ1
�1

BTDB det½J�dZdx ¼ r
X6
m¼1

X6
n¼1

wmwn½Bmn�
TD½Bmn� det½Jmn�, (10)

where D denotes the matrix of elastic coefficients for composite materials (see Appendix A) while wm and wn

are the Gauss–Lobatto weights calculated at the element nodes m and n from the following formula [43]
epoxy-graphite, t=0.48 ms epoxy-glass, t=0.48 ms

θ=90°, vol=25%

θ=60°, vol=25% θ=60°, vol=25%

θ=45°, vol=25% θ=45°, vol=25%

θ=90°, vol=25%

Fig. 9. Front of propagating transverse wave for a single layer.
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(see also Eq. (2)):

wm;n ¼
1

15P5ðxm;nÞ
; m; n ¼ 1; . . . ; 6. (11)

Due to the fact that the element approximation shape functions are orthogonal, as shown by Eq. (4), the
element mass matrix M is diagonal.

In the presence of no damping the equation of motion can be easily discretised and solved in the time
domain by applying the central difference time integration scheme:

M€qt þ Kqt ¼ QðtÞt � Ft, (12)

where the symbol t denotes time, Q(t) is the vector of excitation forces, and F is the vector of internal forces.
The symbols q and €q denote here the vectors of nodal displacement and nodal accelerations.
epoxy-graphite, t=0.60 ms epoxy-glass, t=0.60 ms

θ=90°, vol=25%

θ=60°, vol=25% θ=60°, vol=25%

θ=45°, vol=25% θ=45°, vol=25%

θ=90°, vol=25%

Fig. 10. Front of propagating transverse wave for a single layer.
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Because of the diagonal form of the global mass matrix M the equation of motion can be further simplified
and written as [44]

qatþDt
¼

Rat

Paa
,

Rat
¼ Qat

� Fat
� K�

2

Dt2
M

� �
aa
qat
�

1

Dt2
Maaqat�Dt

,

Paa ¼
1

Dt2
Maa, ð13Þ

where the symbol a denotes the successive global dof and Dt is a time increment. The solution of the equation
of motion, based on such a procedure, is very fast and effective due to the diagonal form of the mass matrix.

3. Numerical calculations

3.1. Geometry definition and material properties

The geometry of a composite plate under investigation is presented in Fig. 4. The length and the width of the
plate is 1000mm. It is assumed that the plate is made out of glass-epoxy or graphite-epoxy composite material.
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The following material data have been used: for the reinforcing glass fibres: Young’s modulus E ¼ 66.5GPa,
Poisson ratio v ¼ 0.23, and density r ¼ 2250 kg/m3, for the reinforcing graphite fibres: Young’s modulus
E ¼ 275.6GPa, Poisson ratio v ¼ 0.20, and density r ¼ 1900 kg/m3, whereas for the epoxy matrix Young’s
modulus E ¼ 3.43GPa, Poisson ratio v ¼ 0.35, and density r ¼ 1250 kg/m3. The orientation angle y of the
reinforcing fibres and their relative volume fraction vol have been assumed as variable in the present analysis.

First, a single layer composite plate 10mm thick is investigated. Next a multilayer composite plate
consisting of 10 layers of composite material, each layer 1mm thick, is analysed.

In all numerical examples the same mesh of 40� 40 spectral plate elements has been used which results in
121,203 dof. The time of the analysis has been assumed as equal to 0.0012 s divided by 5000 time integration
steps.
epoxy-graphite, t=0.24 ms epoxy-glass, t=0.24 ms

θ=0°, vol=10% θ=0°, vol=10%

θ=0°, vol=30% θ=0°, vol=30%

θ=0°, vol=50% θ=0°, vol=50%

Fig. 13. Front of propagating transverse wave for a single layer.
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3.2. Influence of the orientation of reinforcing fibres on wave propagation

In this section numerical calculations have been carried out for a single layer composite plate presented in
Fig. 4 with free boundary conditions (all four edges of the plate free). In all cases considered here the relative
volume fraction of the fibres is equal to 0.25. An excitation signal in the form of a force pulse signal of 100N
amplitude has been applied at point A, and is presented in Fig. 5 in both time and frequency domains. The
frequency of the carrier signal is 25 kHz with three cycles, which is below the so-called ‘cut-off’ frequency, also
marked in Fig. 5. The ‘cut-off’ frequency is calculated for the single layer of the glass-epoxy laminate (compare
with Fig. 14). This means that only the A0 Lamb wave mode should be observed during the analysis. The
influence of the fibre orientation on the propagation of the transverse elastic waves in the plate has been
investigated.

For the current case the group velocity cg of the transverse wave is not constant, but is a function of the
relative volume fraction of the fibres, the direction of propagation and also depends on the frequency of the
signal. This velocity can be calculated analytically by a procedure shown in Appendix A. The velocities
calculated theoretically enable one verification of the correctness of the results of numerical simulation.

For the single layer composite plate analysed wave propagation velocities related to the local direction
parallel to the reinforcing fibres x0 and the local direction perpendicular to the fibres y0 have the following
values:

For glass-epoxy material:

cgx0 ¼ 1056:35 m=s; cgy0 ¼ 916:03 m=s:

For graphite-epoxy material:

cgx0 ¼ 1172:82 m=s; cgy0 ¼ 941:80 m=s:

Using the values of the velocities calculated in Eq. (A.6) it is very easy to estimate the time t needed for a
propagating elastic wave to travel from the excitation point A to points B, C or D (Fig. 4). Taking into
account the geometry of the plate as well as the wave propagation velocities the time t can be easily calculated
for each case.

The group velocity depends on the direction of wave propagation, so the group velocity surface can be
plotted in a polar coordinate as presented in Fig. 6. It is shown that the front of the propagating wave is
retained, while elliptic-like elongation rotates according to the orientation angle of the fibres y.

Certain results on the influence of the orientation of the reinforcing graphite and glass fibres on the shapes
of propagating transverse waves are shown in Figs. 7–10. It is clearly visible that the orientation of the fibres is
the main factor influencing the propagating waves.
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3.3. Influence of the relative volume fraction of reinforcing fibres on wave propagation

The relative volume fraction is a factor which influences the velocity of propagating waves. An increase in
the relative volume fraction of the reinforcement in a composite material results in an increase in the velocity
of propagating waves as shown in Figs. 11 and 12. It should be noticed that the group velocities for the glass-
epoxy layer (Fig. 11) substantially differ from the graphite-epoxy velocities (Fig. 12). In the second case, the
shapes of the group wave surfaces are also sharper.

It can be expected that the shape of propagating waves is similar to those depicted in previous figures.
However, no monochromatic wave packets are considered. For this reason many wave components
participate in the global motion influencing each other. Also imaginary parts of the roots of Eq. (A.5) indicate
that evanescent waves are also present. As a result of that the patterns presented in Fig. 13 are obtained
and wave fronts differ slightly from the velocity wave surfaces. The envelope presented in Fig. 13 show
epoxy-graphite, θ=[+60°/-60°]5, vol=25% epoxy-glass, θ=[0°/90°]5, vol=25%

t=0.24 ms t=0.24 ms

t=0.36 ms t=0.36 ms

t=0.48 ms t=0.48 ms

Fig. 15. Front of propagating transverse wave for a multilayer composite plate.
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the theoretically calculated group velocity multiplied by an adequate time of analysis (as presented in
Appendix A).

Fig. 14 shows the dependence of the group velocity on the frequency for the volume fractions of the
reinforcement equal to: 10%, 20%, 30%, 40% and 50%. As the frequency increases the velocity increases as
well. This relation is known as a dispersion curve. Dispersion relations are very important and cause
additional problems in building appropriate damage detection algorithms. In Fig. 14, the second mode can be
also observed propagating above cut-off frequency (around 50 kHz).

3.4. Wave propagation in a multilayer plate

In this case numerical calculations have been carried out for a 10 layer composite plate of the same
geometry, boundary conditions, and the excitation signal as considered before. The assumed material for a
single layer are glass-epoxy and graphite epoxy as in the previous example. The influence of the fibre
θ=[+45°/-45°]5, vol=10% θ=[+45°/-45°]5, vol=10%

θ=[+45°/-45°]5, vol=30% θ=[+45°/-45°]5, vol=30%

θ=[+45°/-45°]5, vol=50% θ=[+45°/-45°]5, vol=50%

exopy-graphite, t=0.24 ms exopy-glass, t=0.24 ms

Fig. 16. Front of propagating transverse wave for a multilayer composite plate.
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orientation has been investigated on the propagation of transverse waves in the plate. In this case the
behaviour of propagating waves is more complicated than the behaviour observed in the case of the single
layer composite plate. It is assumed that the shape of each travelling wave is a superposition of the waves
travelling in each individual layer of the composite due to homogenization—see Fig. 15. It is also shown that
the velocity of the propagating transverse elastic waves is a function of the volume fraction of the reinforcing
fibres (a fact that has already been confirmed theoretically by Eq. (A.6)—see Fig. 16.
4. Conclusions

In this paper a spectral plate finite element has been successfully developed and applied for the analysis of
elastic wave propagation in a composite plate for various orientations and relative volume fractions of
reinforcing fibres. However, it has been noticed that certain instabilities of time integration schemes used for
solving the equation of motion may arise. In order to overcome these problems a spatial sampling of the order
of 4 to 5 points per minimum wavelength must be used and the time step should fulfils the Courant condition.

Results of numerical calculations indicate that the velocities of flexural waves travelling in composite
materials are functions of the relative volume fraction of reinforcing fibres as well as the direction of
propagation. Simple formulas for the calculation of the velocities of the flexural waves in composite materials
have been presented and compared with the results of numerical calculations. These results show how the
orientation of the fibres and the total number of layers influence the behaviour of propagating waves. This
knowledge is an important factor from a practical point of view, especially for the design of appropriate
monitoring systems utilising anomalies in the propagation of elastic waves.

In the opinion of the authors the SEM approach presented can easily be modified and adopted for use in the
case of 3D structural elements or structural elements with damage in the form of cracks, delamination, etc.
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Appendix A

The strain–stress matrix D in the case of composite material may be expressed in the following way:

D ¼

D11 D12 D16 0 0

D12 D22 D26 0 0

D16 D26 D66 0 0

0 0 0 A44 A45

0 0 0 A45 A55

2
6666664

3
7777775
, (A.1)

where the elements of the matrix D can be calculated as defined in Ref. [1].
The group velocities can be calculated by means of the following procedure. Assuming wave propagation

solutions in the following form:

wðx; y; tÞ ¼ w0 expð�ikx cos yÞ expð�iky sin yÞ expð�iotÞ,

aðx; y; tÞ ¼ a0 expð�ikx cos yÞ expð�iky sin yÞ expð�iotÞ,

bðx; y; tÞ ¼ b0 expð�ikx cos yÞ expð�iky sin yÞ expð�iotÞ, ðA:2Þ

where w0, a0, b0 are wave amplitudes and y denotes the angle between the global and the local material axes.
Substitution of these solutions into the Mindlin’s equations of motion [2] results in the set of equations which
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can be written as

H11ðkÞ H12ðo; kÞ H13ðkÞ

H21ðkÞ H22ðkÞ H23ðo; kÞ

H31ðkÞ H32ðkÞ H33ðkÞ

2
64

3
75

w0

a0
b0

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>;, (A.3)

where the elements of the matrix H are:

H11 ¼ ikmA44 þ iknA45;

H12 ¼ Io2 � A44 � k2m2D11 � 2k2mnD16 � k2n2D66;

H13 ¼ �A45 � k2mnD12 � k2m2D16 � k2n2D26 � k2mnD66;

H21 ¼ ikmA45 þ iknA55;

H21 ¼ H13;

H23 ¼ Io2 � A55 � k2n2D22 � 2k2m2nD26 � k2m2D66;

H31 ¼ hro2;

H32 ¼ ik3m3D11 þ ik3mn2D12 þ 3ik3m2nD16 þ ik3n3D26 þ 2ik3mn2D66;

H33 ¼ ik3m2nD12 þ ik3m3D16 þ ik3n3D22 þ 3ik3mn2D26 þ 2ik3m2nD66;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(A.4)

and where i ¼
ffiffiffiffiffiffiffi
�1
p

, the mass inertia I ¼ 1
3

PN
k¼1r½h

3
k � h3

k�1�; o ¼ 2pf .
The next calculation of the determinant of the matrix H leads to the following relation:

a6k
6
þ a4k

4
þ a2k

2
þ a0 ¼ 0; ai ¼ aiðoÞ; i ¼ 0; 2; 4; 6. (A.5)

There are six roots of this equation which correspond to three sets of mode pairs. The group velocities of the
first real propagating mode can be calculated numerically from:

cg ¼
do
dk1

. (A.6)
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